Lawsonia intracellularis contains a gene encoding a functional rickettsia-like ATP/ADP translocase for host exploitation.
نویسندگان
چکیده
ATP/ADP translocases are a hallmark of obligate intracellular pathogens related to chlamydiae and rickettsiae. These proteins catalyze the highly specific exchange of bacterial ADP against host ATP and thus allow bacteria to exploit their hosts' energy pool, a process also referred to as energy parasitism. The genome sequence of the obligate intracellular pathogen Lawsonia intracellularis (Deltaproteobacteria), responsible for one of the most economically important diseases in the swine industry worldwide, revealed the presence of a putative ATP/ADP translocase most similar to known ATP/ADP translocases of chlamydiae and rickettsiae (around 47% amino acid sequence identity). The gene coding for the putative ATP/ADP translocase of L. intracellularis (L. intracellularis nucleotide transporter 1 [NTT1(Li)]) was cloned and expressed in the heterologous host Escherichia coli. The transport properties of NTT1(Li) were determined by measuring the uptake of radioactively labeled substrates by E. coli. NTT1(Li) transported ATP in a counterexchange mode with ADP in a highly specific manner; the substrate affinities determined were 236.3 (+/- 36.5) microM for ATP and 275.2 (+/- 28.1) microM for ADP, identifying this protein as a functional ATP/ADP translocase. NTT1(Li) is the first ATP/ADP translocase from a bacterium not related to Chlamydiae or Rickettsiales, showing that energy parasitism by ATP/ADP translocases is more widespread than previously recognized. The occurrence of an ATP/ADP translocase in L. intracellularis is explained by a relatively recent horizontal gene transfer event with rickettsiae as donors.
منابع مشابه
Increased and controlled expression of the Rickettsia prowazekii ATP/ADP translocase and analysis of cysteine-less mutant translocase.
Detailed molecular analysis of the Rickettsia prowazekii ATP/ADP translocase, an obligate exchange transport system that is specific for ATP and ADP, has been extremely difficult due to limited quantities of material available from these obligate intracytoplasmic bacteria and by the toxicity and poor expression in recombinant Escherichia coli expression systems. In this study, a stable and cont...
متن کاملStudy of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): Only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides.
The obligate intracytoplasmic pathogen Rickettsia prowazekii relies on the transport of many essential compounds from the cytoplasm of the eukaryotic host cell in lieu of de novo synthesis, an evolutionary outcome undoubtedly linked to obligatory growth in this metabolite-replete niche. The paradigm for the study of rickettsial transport systems is the ATP/ADP translocase Tlc1, which exchanges ...
متن کاملIdentification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase.
The Rickettsia prowazekii ATP/ADP translocase was identified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis using antibodies raised against a synthetic peptide corresponding in sequence to the carboxyl-terminal 17 amino acids of the carrier. Both the translocase of R. prowazekii and that expressed by Escherichia coli transformants containing th...
متن کاملATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae.
ATP/ADP translocases catalyze the highly specific transport of ATP across a membrane in an exchange mode with ADP. Such unique transport proteins are employed by plant plastids and have among the prokaryotes so far only been identified in few obligate intracellular bacteria belonging to the Chlamydiales and the Rickettsiales. In this study, 12 phylogenetically diverse bacterial endosymbionts of...
متن کاملEnergy metabolism of monocytic Ehrlichia.
We investigated if the monocytic Ehrlichia are totally dependent on their host cells for energy, or, as Rickettsia, are capable of some ATP synthesis in vitro. The Miyayama strain of Ehrlichia sennetsu and the Maryland and Illinois strains of Ehrlichia risticii were cultivated in a mouse macrophage cell line, separated from host cell constituents by procedures that included Renografin or Percol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 17 شماره
صفحات -
تاریخ انتشار 2008